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1.0
Introduction

In this chapter, we will discuss two special types of linear programming problem

called transportation and assignment problems. Transportation problem (TP) has re-

ceived this name because many of its applications involve determining how to trans-

port goods in an optimal way. However, some of its important applications actually

have nothing to do with transportation. For instance, consider production schedul-

ing problem; its objective is to maximize the efficiency of the operation and reduce

costs. On the other hand, assignment problem involves applications of assigning peo-

ple to tasks. Although its applications appear to be quite different from those for the

transportation, we see that the assignment problem can be viewed as a special type of

transportation problem.



MODULE - 1: Mathematical Formulation
and Initial BFS of Transportation Problem

1.1
Mathematical Formulation of TP

The transportation problem (TP) is concerned with determining an optimal strategy

for transporting a commodity from a number of origins or sources to various destina-

tions in such a way that the total transportation cost is minimized. Each origin has its

own capacity or availability and each destination has its individual requirement.

Destination

D1 D2 · · · Dn Availability

Origin

O1 c11 c12 · · · c1n a1

O2 c21 c22 · · · c2n a2
... · · · · · · · · · · · · ...

Om cm1 cm2 · · · cmn am

Requirement b1 b2 · · · bn

Table 1.1: Transportation table

Suppose that there arem originsOi , i = 1,2, ...,m and n destinations Dj , j = 1,2, ...,n

(Table 1.1). The ith origin’s capacity (availability) is ai units and the jth destination’s

requirement (demand) is bj units. Let cij be the cost of shipping one unit of the com-

modity from the ith origin to the jth destination. If xij represents the number of units

shipped from the ith source to the jth destination, the problem is to determine the

transportation schedule so as to minimize the total transportation cost while satisfy-

ing the supply and demand conditions (rim conditions). Mathematically, a TP may be
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stated as follows:

Minimize (total cost) Z =
m∑
i=1

n∑
j=1

cijxij (1.1)

subject to the constraints

n∑
j=1

xij = ai , i = 1,2, ...,m (supply or availability constraints) (1.2)

m∑
i=1

xij = bj , j = 1,2, ...,n (demand or requirement constraints) (1.3)

xij ≥ 0 for all i and j. (1.4)

If
m∑
i=1

ai =
n∑

j=1
bj then the transportation problem is called balanced.

Theorem 1.1 (Existence of feasible solution): A necessary and sufficient condition for

the existence of a feasible solution of the TP (1.1)-(1.4) is

m∑
i=1

ai =
n∑

j=1

bj

Proof: Part (i) (The condition is necessary)

Let there exist a feasible solution xij (i = 1,2, · · · ,m; j = 1,2, · · · ,n) of the TP (1.1)-(1.4).

Then, we have
m∑
i=1

ai =
m∑
i=1

 n∑
j=1

xij

 = n∑
j=1

 m∑
i=1

xij

 = m∑
i=1

bj

Hence
m∑
i=1

ai =
n∑

j=1

bj = λ (say)

Part (ii) (The condition is sufficient)

Suppose that there exists a feasible solution xij given by xij = aibj /λ for all i and j.

Clearly, xij ≥ 0 since ai > 0, bj > 0 for all i and j.

Also,
n∑

j=1

xij =
n∑

j=1

(aibj /λ) =
ai
λ

n∑
j=1

bj = ai , i = 1,2, ...,m

and
m∑
i=1

xij =
m∑
i=1

(aibj /λ)
bj
λ

m∑
i=1

ai = bj , j = 1,2, ...,n

Thus, xij satisfies all the constraints of the TP and hence it is a feasible solution.

Corollary 1.1: There always exists an optimal solution of TP.



Proof: Let us suppose that, for a TP, the relation
∑
i
ai =

∑
j
bj holds so that a feasi-

ble solution xij exists. It follows from the constraints of the problem that each xij is

bounded, viz., 0 ≤ xij ≤min(ai , bj). Thus the feasible region of the problem is closed,

bounded and non-empty and hence there exists an optimal solution.

Theorem 1.2 (Basic feasible solution): The number of basic variables in a TP with m

origins and n destinations is at most (m+n− 1).

Proof: Consider the following (m+n) constraints of a balanced TP:

n∑
j=1

xij = ai , i = 1,2, ...,m (1.5)

m∑
i=1

xij = bj , j = 1,2, ...,n (1.6)

Taking summation on both sides of (1.5), we get

m∑
i=1

n∑
j=1

xij =
m∑
i=1

ai =
n∑

j=1

bj (balanced problem)

Summing the first (n− 1) constraints of (1.6), we get

n−1∑
j=1

m∑
i=1

xij =
n−1∑
j=1

bj

Subtracting the second summation from the former one, we get

m∑
i=1

n∑
j=1

xij −
n−1∑
j=1

m∑
i=1

xij =
n∑

j=1

bj −
n−1∑
j=1

bj

or,
m∑
i=1

 n∑
j=1

xij −
n−1∑
j=1

xij

 = bn

or,
m∑
i=1

xin = bn

which is precisely the nth constraint of (1.6). Thus one of the (m + n) constraints is

redundant andmay be removed from the set of constraints. As a result, a basis consists

of at most (m+n− 1) variables.

1.1.1 Loops in Transportation Table
In a transportation table, an ordered set of four or more cells is said to form a loop if



(i) any two adjacent cells in the ordered set lie in the same row (column);

(ii) not more than two adjacent cells in the ordered set lie in the same row (column);

(iii) the first and the last cells in the ordered set lie in the same row (column);

(iv) the ordered set must involve at least two rows (columns) of the table.

Loops are closed i.e. they have neither beginning nor end. Tables 1.2, 1.3 and 1.4

show three different loops while Table 1.5 shows a non-loop.

(1,1)←←(1,2)
↓ ↑
↓ ↑
↓ ↑
↓ ↑
↓ ↑

(3,1)→→(3,2)

Table 1.2: Loop L1

(1,1)←←(1,2)
↓ ↑
↓ ↑
↓ (2,2)←←←←←(2,4)
↓ ↑
↓ ↑

(3,1)→→→→→→→→(3,4)

Table 1.3: Loop L2

(1,1)→→(1,2)
↑ ↓
↑ ↓

(2,1)←←←←←←←←(2,4)
↓ ↑
↓ ↑
↓ ↑
↓ ↑
↓ ↑

(4,2)→→→→→(4,4)

Table 1.4: Loop L3

(1,1)←←(1,2)
↓ ↑
↓ ↑

(2,1)→→(2,2)←←←←←(2,4)
↓ ↑
↓ ↑
↓ ↑
↓ ↑
↓ ↑

(4,2)→→→→→(4,4)

Table 1.5: Non-Loop L4

Corollary 1.2: A feasible solution of a TP is called basic if and only if the corresponding

cells in the transportation table do not form a loop.



1.2 Algorithm to Solve A TP

The solution of a TP may be summarized in the following steps :

Step 1: For the given TP, examine whether the total supply equals the total demand.

If not, introduce a dummy row/column having all its cost elements zero, and

supply/demand as positive difference of supply and demand.

Step 2: Find an initial BFS which must satisfy all the supply and demand conditions.

Step 3: Examine the solution for optimality, i.e., examine whether an unoccupied cell

whose inclusion may result in an improved solution.

Step 4: If the solution is not optimal, modify the shipping schedule by including that

unoccupied cell whose inclusion may result in an improved solution.

Step 5: Repeat Steps 3 and 4 until no further improvement is possible.

1.3 Method to Find An Initial BFS

There are several methods available to obtain an initial BFS for a TP:

1. North-West (N-W) Corner Rule
Steps involved in the N-W corner rule are given below:

Step 1: Make the maximum possible allocation to the upper left (north-west) corner

cell in the first row depending upon the availability of supply for that row and

demand requirement for the column containing that cell, i.e., min (a1,b1).

Step 2: Move to the next cell of the first row depending upon the remaining supply

for that row and the demand requirement for the next column. Proceed till the

row total is exhausted. There arise three possible cases to move to the next cell :

(i) b1 > a1: If the allocation made in step 1 is equal to the supply available at

the first source (a1, in the first row), then move vertically down to the cell (2, 1).

Apply step 1 again, for the next allocation.

(ii) b1 < a1: If the allocation made in step 1 is equal to the demand of the

first destination (b1, in the first column) then move horizontally to the cell (1, 2).

Apply step 1 again for the next allocation.

(iii) b1 = a1: If there is a tie then allocate x11 = a1 = b1 and move diagonally

to the cell (2, 2).



Step 3: Repeat steps 1 and 2 moving down towards the lower/right (south-east) cor-

ner of the transportation table until all the requirements are satisfied.

Example 1.1: Obtain the initial BFS of the following TP using N-W corner rule.

Destination

Origin

D1 D2 D3 Capacity

O1 5 4 3 100

O2 8 4 3 300

O3 9 7 5 300

Requirement 300 200 200

Table 1.6: Transportation Table

Solution: Since
∑

i ai =
∑

j bj = 700, the given TP is balanced and it has a feasible

solution. Using N-W corner rule, the initial BFS is obtained (see Table 1.7) as x11 = 100,

x21 = 200, x22 = 100, x32 = 100 and x33 = 200. The number of allocated cells is 5 which

is equal to the value m+n−1 = 3+3−1 = 5. Therefore, the solution is non-degenerate

and the corresponding transportation cost is Rs.(100× 5+200× 8+100× 4+100× 7+
200× 5) = Rs. 4200.

D1 D2 D3 ai

O1

�� ��100

5 4 3 100

O2

�� ��200
�� ��100

8 4 3 300

O3

�� ��100
�� ��200

9 7 5 300

bj 300 200 200

Table 1.7: Initial BFS using N-W corner rule

2. Least Cost Method or Matrix Minima Method
The steps involved in this method are as follows:

Step 1: Determine the cell with the lowest unit cost in the entire transportation table

and allocate as much as possible to this cell. Let it be cij . Allocate xij =min (ai ,bj)

in the cell (i, j). If the smallest unit cost is not unique then select the cell where

the maximum allocation can be made.



Step 2: If xij = ai , cross off the ith row, decrease bj by ai and go to step 3.

If xij = bj , cross off the jth column, decrease ai by bj and go to step 3.

If xij = ai = bj , cross off either the ith row or the jth column but not both.

Step 3: Repeat steps 1 and 2 until the resulting reduced transportation table satis-

fies all the requirements. Whenever the minimum cost is not unique, make an

arbitrary choice among the minima.

Example 1.2: Obtain the initial BFS of the following TP usingMatrixminimamethod.

Destination

Origin

D1 D2 D3 Supply

O1 16 20 12 200

O2 14 8 18 160

O3 26 24 16 90

Demand 180 120 150

Table 1.8: Transportation table for Example 1.2

Solution: The initial BFS as shown in Table 1.9 is x11 = 50, x13 = 150, x21 = 40, x22 =

120 and x31 = 90. Number of allocations = 5 = m+ n− 1. The cost corresponding to

this feasible solution is Rs.(50× 16+150× 12+40× 14+120× 8+90× 26) = Rs. 6460

D1 D2 D3 ai

O1

�� ��50
�� ��150

16 20 12 200

O2

�� ��40
�� ��120

14 8 18 160

O3

�� ��90

26 24 16 90

bj 180 120 150

Table 1.9: Initial solution using Matrix minima method

3. Row (Column) Minima Method
In this method, instead of finding the minimum cost cell, we find the minimum cost

cell of the row (column). We give below the steps of row minima method:



Step 1: Determine the smallest cost in the first row of the transportation table. Let it

be c1j . Allocate as much as possible i.e., x1j = min. (a1,bj) in the cell (1, j).

Step 2: If x1j = a1, cross off the first row, decrease bj by a1 and go to step 3.

If x1j = bj , cross off the jth column, decrease a1 by bj and go to step 3.

If x1j = a1 = bj , cross off the first row and go to the next step.

Step 3: Repeat steps 1 and 2 for the reduced transportation table until all the re-

quirements are satisfied.

Example 1.3: Obtain the initial BFS to the following transportation problem using

row minima and column minima method:

Destination

D1 D2 D3 D4 Supply

Origin

O1 6 3 5 4 22

O2 5 9 2 7 15

O3 5 7 8 6 8

Demand 7 12 17 9

Table 1.10: Example for row minimum method

Solution: In this methods, instead of finding the minimum cost cell as we did in the

matrix minima method, we find the minimum cost cell in the first row or first column

respectively. Then we allocate the maximum possible unit to that cell and proceed

step by step deleting either a row or a column to get the shrunken matrix until all the

rim conditions are satisfied.

Let us first apply the Row Minima method to the above described transportation

problem. We first consider the first row O1 in which minimum cost 3 is in the cell (1,

2). We allocate there the maximum possible units i.e., min(22, 12) = 12. As it satisfies

all demands of D2, so the column D2 can be exhausted. Next, we allocate 9 units in the

cell (1, 4) as it is the next minimum cost in this row. It satisfies all the demands of D4.

Next allocation is made in the cell (1, 3) with 1 unit. Then the availability of origin O1

is exhausted.

Next we choose the second row and the allocate maximum units 15 = min(15,17)

in the cell (2,3) as it has the minimum cost of transportation (i.e., 2) in this row. Next

allocation is made in the third row’s minimum cost cell i.e., in the (3, 1) cell with

maximum units 7 = min(8,7). The last allocation is done in the next minimum cost of

this row i.e., in the cell (3, 4) with the remaining 1 unit.



D1 D2 D3 D4 ai

O1

�� ��12
�� ��1

�� ��9

6 3 5 4 22

O2

�� ��15

5 9 2 7 15

O3

�� ��7
�� ��1

5 7 8 6 8

bj 7 12 17 9

Table 1.11: Initial solution using

row minima method

D1 D2 D3 D4 ai

O1

�� ��12
�� ��9

�� ��1

6 3 5 4 22

O2

�� ��7
�� ��8

5 9 2 7 15

O3

�� ��8

5 7 8 6 8

bj 7 12 17 9

Table 1.12: Initial solution using

column minima method

Thus the initial basic feasible solution of the problem is obtained as x12 = 12, x13 =

1, x14 = 9, x23 = 15, x31 = 7 and x34 = 1 which is shown in the Table 1.11. The number

of allocation is 6, the solution is basic. The cost for this feasible solution is 12×3+1×
5+9× 4+15× 2+7× 5+1× 6 = 143.

In the similar way, we can apply the column minima method to this transportation

problem and get the initial feasible solution which is shown in Table 1.12. From this

table, we get the initial BFS as x12 = 12, x13 = 9, x14 = 1, x21 = 7, x23 = 8 and x34 = 8.

The cost for this feasible solution is 12× 3+9× 5+1× 4+7× 5+8× 2+8× 6 = 184.

3. Vogel’s Approximation Method (VAM)
This method takes into account not only the least cost cij but also the costs that just

exceed cij . The steps of the method are given below:

Step 1: For each row of the transportation table, select the smallest and next-to-

smallest costs. Determine the difference between them for each row. These are

called ‘penalties’. Write down them alongside the transportation table enclosing

by parentheses against the respective row. Similarly, compute these penalties for

each column and write down against the respective column.

Step 2: Identify the row or column with the largest difference among all the rows and

columns. If a tie occurs, use any arbitrary tie breaking choice. Let the largest

difference be in the ith row and cij be the smallest cost in this row. Allocate the

maximum possible amount xij = min(ai ,bj) in the cell (i, j) and cross out the ith

row or the jth column which is appropriate.

Step 3: Compute the row and column penalties for the reduced transportation table

and go to step 2. Repeat the procedure until all the requirements are satisfied.



Example 1.4: Obtain the initial BFS of the following transportation problem using

VAM:

Destination

D1 D2 D3 D4 Supply

Origin

O1 20 22 17 4 120

O2 24 37 9 7 70

O3 32 37 20 15 50

Demand 60 40 30 110

Table 1.13: Transportation table for Example 1.4

Solution: The penalties for rows and columns are shown in Table 1.14.

D1 D2 D3 D4 ai Penalty

O1

�� ��40
�� ��80

20 22 17 4 120 (13)(13)

O2

�� ��10
�� ��30

�� ��30

24 37 9 7 70 (2)(2)(2)(17)(24)(24)

O3

�� ��50

32 37 20 15 50 (5)(5)(5)(17)(32)

bj 60 40 30 110

Penalty (4) (15) (8) (3)
(4) (8) (3)
(8) (11) (8)
(8) (8)
(8)
(24)

Table 1.14: Initial BFS in VAM

The initial BFS by VAM is obtained as x12 = 40, x14 = 80, x21 = 10, x23 = 30, x24 = 30

and x31 = 50. The corresponding total transportation cost is Rs.(40× 22+80× 4+10×
24+30× 9+30× 7+50× 32) = Rs. 3520.


